

Motivation: Why Care about this Reaction?

- ❖ World energy consumption is projected to raise by 50% from 2018 to 2050.
- Energy consumption derived from biomass accounted for 46% of the total renewable energy (Remaining from hydro, geothermal, photovoltaic and wind etc).
- ❖ Furfural is only derived from lignocellulosic biomass which can be converted into solvents, polymers, fuels and other useful chemicals.

<u>Figure:</u> Global primary energy consumption by energy source.

Motivation: Why Bimetallic?

- ☐ Problems: Harmful element, Over reaction, Poor selectivity.
- ☐ Possible solution: Bimetallic Catalyst
 - Lower cost
 - maximizing yield to a specific product
 - increasing the selectivity
 - Improving stability by inhibiting sintering
 - creation of new reaction pathway

Specifications of our Dilute Limit Alloy Catalyst:

- ☐ <u>Metal Precursors</u>:
- Tetraamine Palladium(II) chloride monohydrate
- Hexaamminenickel(II) chloride
- ☐ Support: Aerosil300
- ☐ Synthesis Method: co-Strong Electrostatic Adsorption (co-SEA)

☐ Catalyst:

0.16% Pd 1.42% Ni on Silica

or Pd₁Ni₁₅/A300

Reduced at 400C for 1.5hr with 10% H₂

XRD indicates formation of very small particles (<1.5nm)

Confirmation of Dilute Limit Alloy formation:

<u>Figure:</u> CO-FTIR study. Comparison of fitted Gaussian functions for monometallic and bimetallic Pd-Ni DLA catalysts – indicating the formation of DLA.

Figure: TPR spectra for Pd, Ni and Pd-Ni DLA catalysts

□ Reduction temperature of Ni/SiO₂ is affected by the presence of Pd – Confirming the presence of dilute limit of Pd.

The Reaction:

Figure: Proposed reaction network for the aqueous-phase hydrogenation of FAL over supported Pd catalysts

Reaction Plan:

- ☐ Sample collection at 0.5hr, 1.5hr, 3hr, 5hr, 8hr
- ☐ Total 15.8 mg metal (1gm catalyst) per batch.
- ☐ Temperature range 120 °C to 150 °C
- ☐ Pressure range 150psig to 430psig

Pd ₁ Ni ₁₅ /Si Cata. (gm)	Temp. (°C)	Pressur e (PSIG)
1	120	430
1	150	430
1	180	430
1	120	300
1	150	300
1	180	300
1	120	150
1	150	150
1	180	150

Figure: Aqueous phase furfural hydrogenation Concentration profile comparison using monometallic Pd, monometallic Ni and Pd1Ni DLA. Condition: 150°C, 430PSIG

Reaction Setup:

- ☐ 100 mL stainless-steel autoclave batch reactor
- ☐ 1000 rpm propeller speed
- ☐ Total 60ml reaction solution
- ☐ Reaction duration 8hrs
- ☐ HP 5890 Series II gas chromatogram

Figure: Batch Reactor

Figure: Reactor schematic diagram $_{\rm 8}$

Results: Furfural Hydrogenation by Pd1Ni15/A300

We reproduced the $Pd_1Ni_{15}/A300$ and using that we got similar results for Furfural conversion.

Figure: Current work

Figure: Previous work by Dr. Decastro

Results: Furfural Hydrogenation by Pd₁Ni₁₅/A300

With increasing temperature, cyclopentanone yield increases.

Results: Furfural Hydrogenation by Pd₁Ni₁₅/A300

Ultimate cyclopentanone yield doesn't change much by increasing temperature from 150C to 180C

Results: Furfural Hydrogenation by Pd₁Ni₁₅/A300

Lower temperature favors furfuryl alcohol formation

Post Reaction Catalyst Characterization:

- Pd dissolution was practically zero (<0.07ppm)
- As the temperature increase (at const. pressure at/above 300psig), particles sinter and dissolve less.

Temp. (°C)	Pressure (PSIG)	Ni dissolved %
120	430	27.5%
150	430	16.6%
180	430	8.3%
120	300	15.9%
150	300	10.6%
180	300	8.7%
120	150	19.0%
150	150	15.5%
180	150	12.5%

0.0%

Conclusions & Possible Outcomes:

- □ DLA catalyst of Pd₁Ni₁₅/A300 prepared successfully
- ☐ Characterization by X-ray diffraction showed ultrasmall nanoparticles
- ☐ Operating at lower temperature favors FOL formation.
- ☐ Higher temperature favors cyclopentanone formation and selectivity
- ☐ Lowering pressure from 430PSIG to 300PSIG don't significantly affect the cyclopentanone yield
- ☐ Under the range of this study, 180°C and 300psig was the optimum operating condition for cyclopentanone production
- ☐ As the temperature increase (at const. pressure at/above 300psig), particle sinter and dissolves less.
- ☐ Future work:
 - Investigate effect of temperature above 180 on cyclopentanone yield.

THANKS