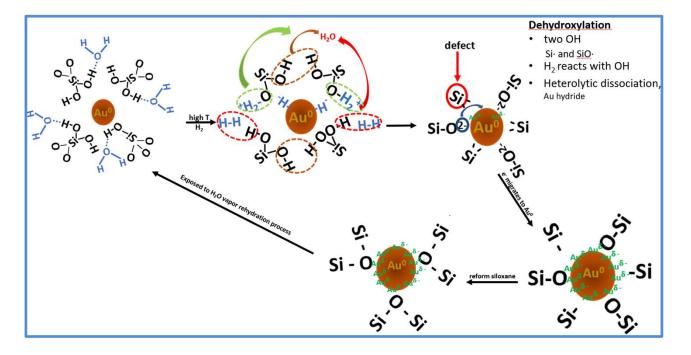
Investigation on the Formation of Negatively Charged Gold Species on SiO₂ and the Activity in CO Oxidation

Anhua Dong, Christopher Williams, John Regalbuto*

Department of Chemical Engineering University of South Carolina <u>adong@email.sc.edu</u>

Project Overview


- CO-FTIR: $Au^{\delta+}$ (> 2120cm⁻¹), Au^0 (2120-2080cm⁻¹), $Au^{\delta-}$ (<2080cm⁻¹);
- Au^{δ-} species observed on nonreducible supports (SiO₂, Al₂O₃) with various thermochemical treatments (H₂ & N₂, 180⁰C, 240⁰C, 290⁰C, 400⁰C);
- Activity of Au^{δ-} species on room temperature **CO oxidation**.

Hypothesis

e^{-} on $Au^{\delta^{-}}$ from:

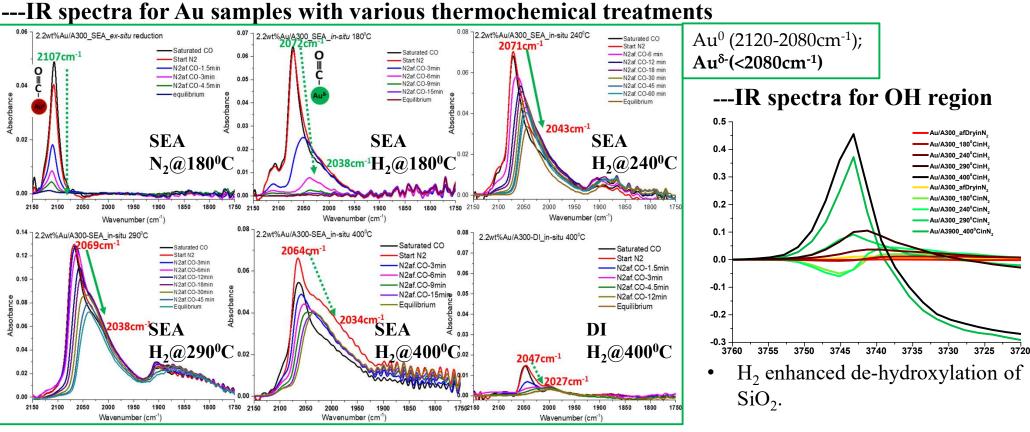
- Active defects
 Si Si O
 - ≡Si•, ≡Si-O•
- Au hydride

Methods

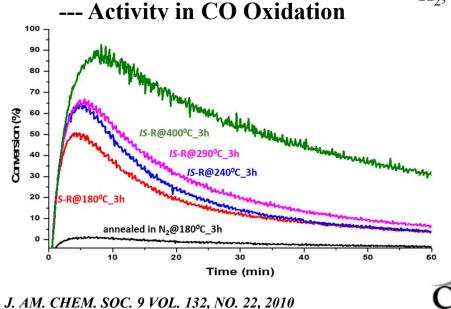
Materials: Aerosil 300 (SA ~300m²/g), gold ethylenediamine;

Synthesis: SEA & DI, 2.2wt%Au, reduced @ 400°C.

Particle size: SEA-1.6nm, DI-11.2nm;


Characterization: CO-FTIR to check the valent states of Au; **Evaluation**: Vertical gas flow reactor for RT CO oxidation.

S. Mohammadnejad et al. /Journal of Colloid and Interface Science 389 (2013) 252–259



Results and Discussion

- H_2 , high T, small NPs

- Higher in-situ reduction T led to a higher initial activity;
- Rapid deactivation is caused by the consumption of $Au^{\delta-}$ species or carbon accumulation.

Conclusions

- Small NPs, high T and H₂ is necessary for the formation of Au^{δ-} on SiO₂;
- Electrons on the active defective sites (Si·, SiO·) produced during the dehydroxylation of SiO₂ or on Au hydride can transfer to Au⁰ and formed Au^{δ-} species;
- Increased activity in RT CO oxidation is achieved over Au sample in-situ reduced at a higher T; rapid deactivation is caused by the consumption of Au^{δ-} species.

