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Introduction

O In 1987, highly dispersed Au NPs was firstly reported for excellent activity in low-
temperature CO oxidation;

) Particle size and supports affect activity through metal-support interaction and contact
boundary;

[ Controversy exists what creates Au® species;

- We have employed Strong Electrostatic Adsorption (SEA) to produce ultra-small NPs to
explore the effect of particle size as well as thermochemical atmosphere on the formation of

Au® on a nonreducible support (silica).
- Different pretreatments affect gold states and activity in CO oxidation.
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Overview: Au® on Reducible and Non-reducible supports

S I o o o

Au/TiO, 3-13 Colloidal-deposition Cal. 450°C 2077-2068 2105-2103 ND
3.6; Deposition-precipitation Cal. at 400°C 2055-1990 2110 2186-2154
g Electron from the

Au/CeO, 1-3 Deposition-precipitation Cal. at 400°C 2065, 2060 2100 2148-2140 reduced support

(0.5-2%) Au/CleO4 — Deposition-precipitation 150°C in WGS feed  2070-1850 2098 2125

3%Au / Fe203 3-4 Deposition-precipitation Cal. at 400°C 2020-1990, 1940 2120
Au/MgO large Deposition onto MgO film 550K in O, 2074-1855 2097 2150 AT e (e
electron-rich oxide defects
1.84%Au/SiO, (20am?/g) 5 Direct anionic exchange (DAE)  Cal. at 400°C 2080-1952 2122-2103 2129-2114
CO reduction
~3 Wet chemical process Cal. at 500°C 2077-2054 2114-2111 2175
1%Au/SiO2 5.7 Deposition-precipitation Cal. at 400°C 2065-2044 2115 Organic ligands
from precursor
1.0%Au/NaY <5 Adsorption of Au(CH,),(CsH,0) 2083-2036 2122 2207-2183
1%Au/Sio, 2.0 Slurry then filter Cal. at 500°C 2070 2112
Suspension then filter Cal. at 300°C 2080-2056 >2120
. Au restructuring
2.1%Au/Al,O, 3.0 Slurry then filter Cal. at 500°C 2079-2040,1886 2107
(208 m?/g)
1%Au/Al,O, 1.8 Anionic exchange Cal. at 300°C 2070-1950 2105-2095
(140 m?/g)

*All information in the table is from literature
O Over reducible supports: Electrons transferred from supports to Au during reduction process;
3
O Over non-reducible supports: Controversial origin of electrons on Au®.




Catalysts Synthesis: SiO, supported Au NPs via SEA or DI

SEA (strong electrostatic adsorption):

s “*Support surface charged by adjusting solution pH

+* Adsorb positively charged metal precursor

s
(o}
pH@PZC §—OH
(?_) l protonate
pH<PZC = H*<— anionic complexes l

i ¢ Strong precursor-support interaction

[Au(en)d-en]?*

SEA procedures:

I o
or oM OH o I 4 ¢ Ultra-small particle size (<2nm)
NH,OH
alj:@%% NaOH pH>PZC
l mass loading: 2.2 wt%,; Au precursor: gold ethylene diamine [Au(en),]3*
: : L Hb),Jo HJU | SEA particle size: 1.6 nm; Dry impregnation: 11 nm
catalyst reduce catalyst before dry

All Au samples were reduced in 20% H, at 400°C for 1hr before pressing IR tﬂiiscs.

L. Jiao, J.R. Regalbuto / Journal of Catalysis 260 (2008) 329-341




Effects of Thermochemical atmosphere Au/SiO, 1.6nm
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U IR spectra were recorded at room temperature and shown with gas CO phase subtracted.

Q In flowing CO, AuC rapidly accumulates and falls as various species of Au® accumulate.

O H, and high T in-situ reduction needed for the formation of strongly bound, negatively charged gold species.

0 Small amount of Au® forms without H, at high annealing T.




Effects of Temp. &

Particle size
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O In-situ reduction temperature greatly
affects the amount of Au® species;

Q Intensity of CO-Au® reached maximum
in-situ reduced at 290°C (XRD — no

O Small
formation of Au®.

0.07 4
0.06 -

0.05 -

o
o
8

0.01

0.00 -

sintering);

particles

(f)

flow CO

are necessary for

0.00

()

T T T T U u 1
2150 2100 2050 2000 1950 1900 1850 1800

the

2150 2100 2050 2000 1950 1900 1850 1800 2150 2100 2050 2000 1950 1900 1850 1800

Wavenumber (cm™)

Wavenumber (cm™)




Effects of O, and water vapor

Absorbance

Effect of H,0 vapor
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O H,0 vapor removes Au® quickly and thoroughly

O Small amount of adsorbed CO at 1880 cm™ persists in presence of O,

Au/SiO, 1.6nm
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Three hypotheses for CO-bands (by IR) lower than 2080 cm™?

|. CO-Au®, anionic Au species from organic residuals;
Il. CO-Au?®, anionic Au species from CO reduction of metallic Au;

l1l. CO-Au®, Au restructuring.




I. TPR-mass spectra disproves the hypothesis of from organic residuals

1strun: flow 20% H,, increase from
RT to 400°C and hold for 1hr

Cool down to RT

’

2" run: flow 20% H,, increase from
RT to 400°C and hold for 1h

diIn the 2™ run of TPR by mass-
spectra, the flat spectra suggest all

the organic ligands were removed in
the 1%t reduction at 400°C.
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Three hypothesis over CO-bands (by IR) lower than 2080 cm™?

l. CO-Au%, anionic Au species from organic residuals;x

Il. CO-Au?®, anionic Au species from CO reduction of metallic Au; ?
0

I1l. CO-Au®, Au restructuring.
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ll. Pretreatment of in-situ reduction in 1%CO disproves the hypothesis of CO reduction
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Fig. 2. (A) Time dependence of polarized RAIRS spectra for 10
Torr CO on Au(l10) at 300 K. (B) Evolution of the CO
stretching vibration intensity as a function of time under vari-
ous CO pressures; each curve is normalized at = 10 min in
order to compare the decay rate. Continuous lines are guides to

eye.

Y. Jugnet et al. / Surface Science 521 (2002) L639-L644

O Au® persists after high T exposure to CO

U Literature: Reconstruction of Au induced by CO

Intensity of CO decreases with time and decay rate increases with

pressure;

Reconstruction-missing row of Au atoms, roughening of the surface;
XPS showed presence of Carbon after exposure to CO and growing

with time.
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Three hypothesis over CO-bands (by IR) lower than 2080 cm™?

l. CO-Au%, anionic Au species from organic residuals;x
Il. CO-Au®, anionic Au species from CO reduction of metallic Au;x

I1l. CO-Au®, Au restructuring.?
O

12




lll. Hypothesis of Au reconstruction

Terraces (occupied only for T < 70K): 2130 cm®

Edges and corners : 2115-2095 cm!
A Kinks, rough edges: 2080-2060 cm™

CO-MgO
— C0-Au?
} CO-Au

N N

0.1%
¥

2C0 > C+CO,

2200 2100 2000 1900

+— V/cm™!

Figure 2. IR spectra after saturation coverage by CO on Au clusters

formed on differently pretreated MgO films. a) film after medium-dose

electron bombardment and deposition of 0.05 ML Au at 30 K; b) pris-
tine MgO film after deposition of 0.025 ML Au at 80 K; c) film after
high-dose electron bombardment and deposition of 0.025 ML Au at

30 K; film annealed to 90 K prior to CO adsorption; T=transmission.
Angew. Chem. Int. Ed. 2006, 45, 2630 2632

c)

a)
R

-

Figure 1. STM topographic images of CO molecules on 2 ML MgO/
Ag(001) imaged with (a) a metallic and (b) a CO-covered tip (3 x 3 nm?,
150 mV, 3pA). The CO(tip)—CO(sample) interaction leads to a ring-like
appearance of the adsorbates in (b). (c) STM image of a CO-saturated Au
island taken with a CO-covered tip (4 x 4 nm?, 100 mV, 3pA). CO-induced

contrast is only revealed at the penmeter of the Au island.
J. Am. Chem. Soc, 2010, 132,22, 7745- 3749

L CO adsorbed on gold island perimeter (with electrons

instead of on the center (adsorbate-free);
L Au with more electrons shows broader and lower

wavenumbers.
O Aud species indeed exist and density of eIectrolr;s

affects the IR signal and frequency.




Proposed Hypothesis for the formation of Au®

. CO-Au®, an”u species from organic residuals;

Il. CO-Au®, anionic Au spe(x)m CO reduction for metallic Au;

I1l. CO-Au?, Au restructuringx

 Charge defects on SiO, surface induced by dehydroxylation at high

temperatures.
Proposed mechanism:

O H H * defective Si- and SiO:,
| electron transfer to Au

. . ) atoms at the perimeter
Sit—0 = Si™"—0% + H,0

IR Identification and Characterization of Surface Hydroxyl Groups 14
Journal of Colloid and Interface Science 389 (2013) 252-259




background

Dehydroxylation at
elevated Ts

Au/SiO,- N, annealed:

O H, enhanced the de-
hydroxylation of SiO,.

Au/SiO,- H, reduced:

U Au enhanced the de-
hydroxylation of SiO,.

SiO,- H, reduced:

O Au can catalyze the
oxidation of H, to H,0.
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Proposed Scheme for the formation of Au®

N
LJ
& §
Journal of Non-Crystalline Solids 19 (1975) 299-309  Journal of Colloid and Interface Science 389 (2013) 252-259
J. Am. Chem. Soc. 2018, 140, 554-557 J. Am. Chem. Soc. 2018, 140,16469-16487557

2 &
\ S ¢
Si- O Q
L J}’ reform siloxane
O

Dehydroxylation
two OH

Si- and SiO-

H, reacts with OH

Heterolytic dissociation,
Au hydride
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Room temperature CO oxidation monitored by mass spectra
Sample: Au/SiO, 1.6nm; Loaded catalyst: ~100mg; RT CO oxidation: 1%CO, 1%0,, balance Ar.
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X 60 N ‘ ik
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1 A

10 - VOVMAA
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° /", T . T ' T r - ,“‘Al—mmn—-‘
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O Higher in-situ reduction temperature led to a higher initial activity;
0 Rapid deactivation may be caused by oxidation of the Au surface or carbon accumulation;
O Residual activity may be related to persistent 1880 cm™! species which persists in O,.




TPO to check C accumulation

4.00E-011 —
0,-TPO over Au sample after CO oxidation reaction

Au/A300-SEA-H-400-3hr

3.00E-011 4

Q
,:% 2008011 7 0,-TPO CO oxidation
£ Peak area 4.3E-10 5.4E-08
& 1.00E011 ] Amount of CO,
(nmol/0.1g) 6.4 7900
_— Conversion of CO (%) 0.55 68

-1.00E-011

T T T T T T T T 1
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O Carbon deposition appears to occur only to a small extent.
O Main deactivation due to loss of Au®




SEA can be used to synthesize ultra-small Au nanoparticles;

Small NPs, high T and H, is necessary for the formation of Au® on SiO,;

dWater vapor can easily rehydrate silica surface and reoxidize Au® species

H H
No”
o ‘N
o %
0-_\’;\_0-?: o»° _ L. o?,
“’0 OsH. O/ A -
Nz ud- -
L 9 high T o 5 --SI
/ "H~o 0 H, S I '0 5”_
= c’{"o \\ \'ﬁ‘—o
S TA O
(0] /0\“0 © Y \
H ¥ g

UlIncreased activity in RT CO oxidation is achieved over Au sample in-situ reduced
at a higher T; rapid deactivation is caused by the consumption of Au?.
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1strun: flow 20% H,, increase from
RT to 400°C and hold for 1hr

Cool down to RT

’

2"d run: flow 20% H,, increase from
RT to 400°C and hold for 1h

U Decomposition of ethylenediamine;

UIn the 2™ run of TPR by mass-
spectra, the flat spectra suggest all
the organic ligands were removed in
the 15t reduction at 400°C.

Catalysis Today 72 (2002) 115-121
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I1l. Hypothesis of Au reconstruction
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Il. Flow CO at RT for 22 hrs to disprove the hypothesis of CO reduction

Sample: 2.2wt% Au/SiO,, 1.6 nm
IR condition: flow CO at RT for 1 and 22h.

in-situ annealed at 180°C in-situ annealed at 400°C
(a) ——CO-1hr (b) —— CO-1hr
——CO-22h ——CO-22h
: :
@ ©
g 8
: :
< <
\'A T T T T T T T T T T 1 L T J T T T T T T T T 1
2250 2200 2150 2100 2050 2000 1950 1900 2250 2200 2150 2100 2050 2000 1950 1900

Wavenumber (cm™) Wavenumber (cm™)

O CO reduction over Au® to Au® at room is a very slow process.
24

IR spectra were recorded at room temperature and corrected by background and gas CO.




Room temperature CO oxidation monitored by IR

Sample: 2.2wt%Au/SiO,-SEA;
Pretreatment: In-situ reduced in IR cell @ 180°C (a), 400°C (b), cool down to RT ;
Reaction condition: flow 1%C0O+10%0, into IR cell at RT.

0.05 -0.05
004 higher activity oo
in-situ reduced @180C e | in-situ reduced @400C 003 8
.- 3
<
01

f T T T T T T T T T T 32 T T T T T T T T T T 1
2400 2350 2300 2250 2200 2150 21!:0_| 2050 2000 1950 1900 2400 2350 2300 2250 2200 2150 2100 2050 2000 1950 1900
Wavenumber (cm) Wavenumber (cm™)

L Au sample in-situ reduced at 400°C showed higher performance in RT CO oxidation;
O Activity decreased sharped after several minutes of the reaction.

IR spectra were recorded at room temperature with background and gas CO correction.




lll. Hypothesis of Au reconstruction

Figure 1_' ST™M topogr aphic IMAgES O Fiayre 3, STM topographic images of (a) a bare and (b) a CO-saturated Au island on 2 ML MgO/Ag(001) (7.0 x 5.5 nm?, 150 mV). Whereas the bare
Ag(00T) imaged with (a) a metallic and  igjand is surrounded by a bright rim, indicating charge accumulation at the perimeter, the CO-covered island exhibits charge-density waves in the interior.
150 mV, 3pA). The CO(tip)—CO(samp. The standing electron waves are due to electron displacement from the island boundary upon CO adsorption.

dappearance of the adsorbates in (b) ((.) D 1iv1 HIIAZT UL a Lu-dalundicu Au

island taken with a CO-covered tip (4 x 4 nm?, 100 mV, 3pA). CO-induced

contrast is only revealed at the perimeter of the Au island.

L CO adsorbed on gold island perimeter (with electrons), instead of on the center (adsorbate-free);

L CO adsorption can modify the charge distribution within the Au islands.
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lll. Room temperature CO oxidation reaction-mechanism

d)

I Au* I
. “ O Au atoms with a lower coordination number can bind CO and O, molecules
more strongly (CO bonds at corners and edge sites more strongly than at facet
sites, Au step edges both O and O, adsorption and O, don’t bind to flat facet of
co, gold NPs)

active
Au atom
/CuO film
/Cu(110)

v n 000 * Smaller gold NPs can adsorb more CO and O, molecules;
- Au {Ov
“ 2 “
inactive

U Negatively charged gold species can adsorb O, more strongly than neutral ones.

L Molecular oxygen obtains two electrons from the Au cluster to form a superoxol state (0%) which can react with
a co-adsorbed CO molecule. (Anionic Au is needed to adsorb and activate O,)

Q Active sites of the Au catalysts are the surface and/or perimeter interface Au atoms which have different charge
densities from the bulk metal.

Catal Lett (2007) 119:21-28,DOI 10.1007/510562-007-9200-z;
M. Okumura et al. / Chemical Physics Letters 346 (2001) 163-168. 27
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Sample: Au/A300-SEA

Pretreatment: in-situ reduced in IR cell @ 400C
Saturated Au surface by CO, then flow CO+0, into IR cell at RT.
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Figure 12. IR spectra over Au/A300-SEA-H-400 in CO and O, atmosphere after CO saturation.




