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Lignocellulosic Biomass

• Plant matter
• Agricultural residue (corn 
stover, bagasse, grass/weed 
clippings, straw)

• Forest byproducts 
• Waste (household, food, businesses)

Structure of 
lignocellulosic plant 
biomass. (from Tomme
et al., 1995).

~ 709 million tons per year of dry biomass available at 
$60/ton (USDoE, Billion Ton Report, 2017 base case)

A
q

u
eo

u
s P

h
ase 

P
ro

cessin
g

Thermal Processing
Lignocellulosic 

Biomass

• Synthesis Gas
• Pyrolysis Oil/Bio-oil
• Aromatics

• Lignin
• Glucose
• Xylose

Isomerization, Dehydration,
Hydrogenation

• GVL + Other fuel 
grade hydrocarbons
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PROJECT 1: Metal/ Acidic Zeolite Nanocrystals for Tandem 
Depolymerization/Hydrodeoxygenation of Lignin Molecules

PROJECT 2: Molecular Layer Deposition (MLD) and Metal 
Modified Mesoporous Silica for Lignin Depolymerization

PROJECT 3: Molecular catalysts on acidic or basic supports for 
lignin deconstruction

What is the effect of the Pd size, acid site 
density, and Zeolite crystal size on HDO? 

Catalysis for Renewables: Applications, 
Fundamentals and Technologies (CRAFT)

• Well tuned multifunctional catalysts  needed for conversion

Catalyst Synthesis
• Effect of acid site density: use 

commercial Zeolite Y5.1, Y12, Y30, Silica 
KIT-6

• Effect of zeolite size: Use Y30 and NanoY
• Effect of Pd Size: Change of synthesis 

method
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Figure 2: (a) XRD pattern of 10-nm FAU 
nanocrystals and (b) TEM image of 10-nm 
FAU nanocrystals. 

NanoY (Nano FAU) Zeolite

Effect of Acid Site Density and Metal Loading

Effect of Metal Particle Size and Zeolite Crystallite Size

• Ion Exchange of Pd (from Pd(NH3)4Cl2) with promotion of Strong 
Electrostatic Adsorption (SEA-IE)

Zeolite
SiO2 : 
Al2O3

Surface Area 
(m2/g)

Pd loading 
(% w/w)

Treatment

Y5.1 5.1 : 1 730
2.5

Calc. 300°C
Red. 180°C

0.075 Calc. 300°C

Y12 12 : 1 730
2.5

Calc. 300°C
Red. 180°C

0.075 Calc. 300°C

Y30 30 : 1 780
2.5

Calc. 300°C
Red. 180°C

0.075 Calc. 300°C

Thermal treatments
• Calc. = Calcined in 20% O₂/bal.He, 250sccm
• Red. = Reduced in 20% H₂/bal.He, 250sccm

SMALL LARGE

Target Size:
2.5 wt% Pd

D<2nm D ~ 4 nm D>15nm

Y30

SEA+IE, small 
batch

Calc. 300°C
Red. 180°C

SEA+IE, large 
batch

Calc. 300°C
Red. 180°C

DI
Calc. 300°C
Red. 180°C

NanoY
SEA+IE

Calc. 300°C
Red. 180°C

DI 
Calc. 300°C
Red. 180°C

KIT-6
SEA

Red. 180°C

CEDI+NaCl
(NaCl:Pd = 0.25:1)

Red. 180°C

DI
Red. 180°C

• DI = Dry Impregnation
• CEDI = Charge Enhanced Dry Impregnation, a DI variant of SEA

Catalyst Characterization

20 nm

~ 4 nm 4.5 nm

20 nm

4 nm

13 nm

<1.5 nm

<1.5 nm

X-Ray Diffraction: Varying SiO2 : Al2O3

X-Ray Diffraction: Varying Pd size, Y size

Electron Microscopy: Varying SiO2 : Al2O3

20 nm 20 nm 10 nm

Reaction conditions:  Guaiacol = 7.5 mmol (0.93 g), 
Water = 20 g, 
Dodecane = 200 µL (internal standard) 
catalyst = 100 mg, 
T = 110 °C, 900 RPM, 
Initial H2 partial pressure/Total P(psi)  ~180/225
Liquid phase C balance ~ 98% ± 2%

HDO of Lignin Model Compound – Guaiacol: Effect of Acidity and Metal Loading
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0.075% Pd/Y5.1 0.075% Pd/Y12 0.075% Pd/Y30

2.5% Pd/Y5.1 2.5% Pd/Y12 2.5% Pd/Y30

• Aromatic products are favored on acidic supports

HDO of Guaiacol: Control Experiments

• At similar support acidity, low Pd loading (0.075 wt %) favors aromatic selectivity (~60% maximum) than high loading (2.5 wt %).
• Higher Pd loading (2.5 wt %) favors ring hydrogenated (Non-AR) over aromatic (AR) products.

HDO of Benzyl Alcohol – Effect of Pd particle 
size, Acidity, and Zeolite Y size
Reaction Condition: Benzyl alcohol  = 22.4 mmol, External standard = 200 µL 
dodecane, Solvent (H2O) = 20 ml, Reaction temperature 110 °C, H2 partial 
pressure = 90 psi, Catalyst, 25 mg, 1100 rpm, Reaction hour 30 minutes. 
Carbon balance= 98 -99.9 %. H2 consumption from external reservoir.

Catalyst:
2.5%Pd/KIT-6

Time,
min

Conv., %
GC, H2

Selectivity, %

Deoxygenated Oxygenated Others

<1.5 nm 30 No- activity

4 nm 30 26.0 (26.8) 96.5 3.4 0.1

13 nm 30 25.6 (26.2) 93.8 6.1 0.1

• The similar HDO activity of reaction data indicate that within the KIT-6 
support, there is no Pd particle size effect.

• Pd particles maybe all on the external surface.

Catalyst:
2.5%Pd/Y30

Time,
min

Conv., %
GC, H2

Selectivity, %

Deoxygenated Oxygenated Others

<1.5 nm 30 26.2 (25.6) 95.6 3.3 1.1

4 nm 30 27.0 (27.2) 96.8 3.1 0.1

20 nm 30 28.4 (26.8) 92.1 7.4 0.5

Activity of BzOH HDO on 2.5%Pd/Y30

Catalyst:
2.5%Pd/NanoY

Time,
min

Conv., %
GC, H2

Selectivity, %

Deoxygenated Oxygenated Others

4 nm 30 5.1 (4.4) 92.4 7.5 0.1

20 nm 30 3.6 (2.3) 96.1 3.8 0.1

Activity of BzOH HDO on 2.5%Pd/NanoY

Activity of BZOH HDO on 2.5%Pd/KIT-6

• No observed particle size effect on Pd/Y30 samples for BzOH HDO.
• NanoY supported catalysts have lower activity, due to rapid deactivation.
• Higher external surface area may have caused coking, resulting in 

deactivation of NanoY catalysts.
• Increased acidity may have a role in deactivation (NanoY SiO2/Al2O3 ~ 2:1). 

However, Y5.1 support did not show similar deactivation in earlier 
experiments.

Summary and Conclusions
• Pd catalysts on acidic (Y Zeolite) and neutral (KIT-6) supports were made 

and Pd size and loading were effectively varied
• Effects of acidity, particle size, loading, and support crystallite size 

(external surface area) were studied for Guaiacol and Benzyl Alcohol HDO.
➢Lower metal loading favored aromatic selectivity at the expense of 

activity.
➢Higher acidity favored aromatic products.
➢No observed particle size effect, at least for BzOH HDO.
➢Larger external surface on acidic support may lead to rapid 

deactivation.
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