Stability of platinum nanoparticles supported on nitrogen-doped carbon

Fahim B. A. Rahman¹ Huynh Ngoc Tien¹, Hector Colon-Mercado², John R. Regalbuto^{1*}

¹Department of Chemical Engineering, University of South Carolina; ²Savannah River National Laboratory

Motivations

- ☐ Ultra-small platinum nanoparticles (Pt-NPs) of high metal dispersion are desirable in many oxidative reactions such as oxygen reduction reaction (ORR) in fuel cells, methanol oxidation etc.
- □ Carbon supported Pt-NPs (Pt/C) are considered the most effective catalysts for such reactions since Pt can be highly dispersed on carbon.
- ☐ However, at oxidative environment, the ultra-small Pt-NPs are quickly oxidized and form oxide films on the metal surface that can decrease the overall performance of the catalysts.
- ☐ Literature also agrees that Pt-NPs is intended to separate from carbon support and aggregate into larger particles, owing to Ostwald ripening effects, thus resulting in short-term stability.
- Stabilizing carbon support can improve metal-support interactions to a great extent.
- Nitrogen doping into the carbon is one of the promising techniques for stabilizing support, as well as supported NPs.

Methodology

MATERIALS

- □ Support: One N-free-C and two N-doped-C (one is prepared by Savannah River National Laboratory and other is made by Virginia Commonwealth University.
- ☐ Precursor: Hexachloroplatinum complex (Sigma Aldrich)

Support	SA (m²/g)	SEA pH	Max. uptake (μmol/m²)	Max. Pt loading
BP-2000	1400	2.75	0.81	24%
N-doped C (SRNL)	900	1.5	0.81	16%
N-doped C (VCU)	2250	1.5	0.78	35%

CATALYST PREPARATION & CHARACTERIZATOPM

- ☐ Preparation: Strong Electrostatic adsorption (SEA)
- ☐ Characterization: In-situ X-ray diffraction (XRD) and Screening electron transmission microscopy (STEM)

In-situ XRD: Reduction and Oxidation

- \square Reduction: @300°C for 1h in 20% H₂ / N₂
- ☐ Oxidation temperature: 25°C to 300°C.
- ☐ XRD Scanning rate: 30/min
- ☐ Holding time at each temperature: 30 minutes

References

- Y. Zhou et al., Energy Environ. Sci., vol. 3, no. 10, pp. 1437–1446, 2010.
 T. Iwasita, Electrochim. Acta, vol. 47, no. 22–23, pp. 3663–3674, Aug. 2002.
- [3] M. Inagaki, M. Toyoda, Y. Soneda, and T. Morishita, *Carbon N. Y.*, vol. 132, pp. 104–140, 2018.
- [4] R. Banerjee, Q. Liu, J. M. M. Tengco, and J. R. Regalbuto, *Catal. Letters*, vol. 147, no. 7, pp. 1754–1764, 2017.

Results and discussions

Acknowledgment

SOUTH CAROLINA

Conclusion and Future works

- Pt⁰ NPs are immediately oxidized even exposure to air at room temperature.
- ☐ N-doped-C supported Pt-NPs show lower tendency for oxidation compared to N-free carbon supported Pt-NPs
- □ At 25°C in air, the rate of oxidation of Pt/BP-2000 is more than twice compared to Pt/N-doped-C.
- ☐ At 300°C in air, 40-50% of N-doped-C supported Pt-NPs remain in metallic while more than 85% of Pt-NPs supported on BP-2000 are oxidized.
- ☐ Between two N-doped carbons, VCU carbon is more effective to stabilize Pt-NPs in oxidative conditions
- □ As STEM shows, N-doped-C supported NPs are more uniformly distributed than N-free-C supported NPs
- ☐ STEM is needed for Pt/N-doped-C (VCU) in order to compare between the N-doped-carbons.
- ☐ Evaluate catalyst performance for oxygen reduction in Proton-exchange membrane fuel cells.