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Biomass to drop-in fuel: step 1

Cellulose
Hemicellulose
Lignin

Pyrolysis

Photo by Dennis Schroeder, NREL 20404. Reliable Characterization for
Pyrolysis Bio-Oils Leads to Enhanced Upgrading Methods.
https://www.nrel.gov/research/highlights/reliable-characterization-

rolysis.html.
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Chemical composition of bio-oil 1, as summarized in 2




7571721 X0 7

guiacol

Typical HDO Typical HDO
conditions conditions

OH
OH
HO. i OH




Challenges

Additional difficulties:
* Selectively breaking C-O bond

e Uses less hydrogen
* Preserving aromaticity keeps
octane value high

OH

2
O

e Water in bio-oil: deactivates catalysts by oxidation




Potential Solution: Pd-Fe

Why Pd-Fe? For gas phase HDO:

 Fe® has high selectivity, but low activity and quick
deactivation by water34

* Pd has low selectivity, but high activity and stability>
* Synergistic effect gives high selectivity and activity®’:
 Pd also stabilizes Fe against deactivation1°

Hypothesis

Pd-Fe catalysts with a higher Fe utilization and better
stability against water oxidation (via a more thorough Pd-Fe
interaction) might be achieved by depositing Pd selectively
onto supported iron oxide particles using SEA prior to
reduction
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Point of Zero Charge (PZC)
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Fe,O; nanoparticle (5 nm)
PZC=7

Silica support:
PZC=3.3

8 nm
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Synthesis and Characterization



Synthesis and Characterization

Question Technique used to answer

What pH values to use for SEA Uptake Survey using Inductively
synthesis? Coupled Plasma Optical Emission
Spectroscopy (ICP-OES)

What is the weight loading of the [CP-OES

Pd?

How much interaction between  Temperature Programmed
Pd and Fe? Reduction (TPR)

What crystallite phases are X-ray Diffraction

present?

What are the crystallite sizes of  X-ray Diffraction
each phase?



Uptake Survey results: Use pH 2.5
-~ Pd /Fe,O, Pd / silica
Pd(NH;),Cl,
— 095 [ PdCLF— + Pd(NH;),**
S - A iPd(NH,),Cl
= 075 g \ | :
NU'I' E : — ;
C 055 | ! !
3 o | N\
a 035 | | :
B - | |
0.15 | | >
S FI=C_ A J iy | |
== -0.05
2 3 4 5 6 7 8 9 10
Final pH
*Pd speciation from reference 11
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Synthesis and Characterization

Question ________|Technique used to answer

What is the weight loading of the
Pd?

|CP-OES

How much interaction between
Pd and Fe?

What crystallite phases are
present?

What are the crystallite sizes of
each phase?

Temperature Programmed
Reduction (TPR)
X-ray Diffraction

X-ray Diffraction
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Synthesis and Characterization

Question __________ Technique used to answer

How much interaction between
Pd and Fe?

Temperature Programmed
Reduction (TPR)

What crystallite phases are
present?

What are the crystallite sizes of
each phase?

X-ray Diffraction

X-ray Diffraction

12



Temperature Programmed Reduction (TPR)
Conditions: 10 °C / min, 50 sccm 10% H, in Ar

Fe,O5 nanoparticle (5 nm)
13.3 wt% Fe,0; (9.7 wt% Fe)

Evonik Aerosil 300

m\fi “i‘ ‘
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Signal

Inverted TCD

'—'"legb-_l-l||||l||||l||

0 100 200 300 400 500 600 700 800
ATemperature [°C]

Fe;0,

—— ===
<

T T O Sy T

-

O T AR 11 6 )



Signal

Inverted TCD
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Pd-Fe interaction: TPR

Sample Pd Fe,0;
[mg] [mg]
0.17%Pd / 0.35| 28.0
13.7%Fe,0, /
[ A300
o
a 13.7%Fe,0, / 0.35| 27.2
O A300 + 1.8%Pd /
E A300
: M 13.7%Fe,0, / 0 28.0
= A300
0.35 0

I 1.8%Pd / A300

T T P T e L T B R R
I ! | I I I I

0 100 200 300 400 500 600 700 800
Temperature [°C]

Physically mixing samples in the TPR does not aid in reduction

SEA to put Pd on Fe,0, greatly aids reduction
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Inverted TCD Signal

, Spillover vs. Pd proximity

i .

Sample Pd Fe,O,
[mg]  [mg]

0.17%Pd / 0.35 28.0

13.7%Fe,0, /

A300 (8 nm)

0.24%Pd / 0.48 28.0

13.3%Fe,0, /

A300 pHf 3.06

0.23%Pd / 0.46 26.4

13.3%Fe,0, /

A300 pHf 9.90

13.3% Fe,0; / 0 26.3

A300
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TPR comparison with Literature'?

5.0Pd/Fe,0,

e SEA prepared Pd catalysts (1.72 z _J |
wt% Pd on Fe,0,) show the first ; J\ I N
reduction peak at 130 °C lower 2 ,Jl P N
than 0.1 to 5wt% catalysts A e,
prepared by incipient wetness 700 240 300 40 500 800 700 800

Temperature ("C)

impregnation

* Evidence of stronger metal-metal
interaction

* Note: the initial Fe particle sizes
are different. Our silica
supported Fe,0; particles are
5nm, their unsupported Fe,O, P e e e
particles are 20nm. remperature [l

b
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Synthesis and Characterization

Question __________ Technique used to answer

What crystallite phases are X-ray Diffraction
present?

What are the crystallite sizes of  X-ray Diffraction
each phase?
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In-Situ XRD: 0.24%Pd/13.3%Fe,0,/A300
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o . 1 | .
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Catalytic Activity

* This series of catalysts completely oxidizes under
reaction conditions with H,O as solvent

* This series of catalysts undergoes majority oxidation
under reaction conditions with hexadecane as solvent

* Liquid-phase kinetic data will need to wait for more
stable catalysts
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Conclusions
* Pd-Fe prepared with SEA shows enhanced interaction
in TPR

* The current array of catalysts oxidizes under reaction
conditions

* Future work requires further catalyst design and
synthesis for enhanced stability during liquid-phase
HDO
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