Selective Deposition of Pd onto Silica Supported Iron for Maintaining Fe⁰ during Hydrodeoxygenation

Jeremiah Lipp, John R. Monnier, John R. Regalbuto
University of South Carolina
Department of Chemical Engineering
SECS
September 23, 2019

Outline

- Motive and Background
- Target and Challenges
- Potential Solution: Pd-Fe
- Strong Electrostatic Adsorption (SEA)
- SEA on silica-supported Fe₂O₃
- Synthesis and Characterization
 - Uptake Surveys
 - Temperature Programmed Reduction
 - In-Situ XRD reduction
- Conclusions

Biomass to drop-in fuel: step 1

Pyrolysis

Cellulose Hemicellulose Lignin

Photo by Dennis Schroeder, NREL 20404. Reliable Characterization for Pyrolysis Bio-Oils Leads to Enhanced Upgrading Methods. https://www.nrel.gov/research/highlights/reliable-characterization-pyrolysis.html.

Biomass to drop-in fuel: step 2

Remove oxygen from bio-oil

Photo by Dennis Schroeder, NREL 20404.

Target

Toughest Deoxygenation: the phenolic C-O bond

Challenges

Additional difficulties:

- Selectively breaking C-O bond
 - Uses less hydrogen
 - Preserving aromaticity keeps octane value high

Water in bio-oil: deactivates catalysts by oxidation

Potential Solution: Pd-Fe

Why Pd-Fe? For gas phase HDO:

- Fe⁰ has high selectivity, but low activity and quick deactivation by water^{3,4}
- Pd has low selectivity, but high activity and stability⁵
- Synergistic effect gives high selectivity and activity^{6,7,8}
- Pd also stabilizes Fe against deactivation^{9,10}

Hypothesis

Pd-Fe catalysts with a higher Fe utilization and better stability against water oxidation (via a more thorough Pd-Fe interaction) might be achieved by depositing Pd selectively onto supported iron oxide particles using SEA prior to reduction

Strong Electrostatic Adsorption (SEA)

Hydrogen

Point of Zero Charge (PZC)

SEA on silica-supported Fe₂O₃

Synthesis and Characterization

Synthesis and Characterization

Question	Technique used to answer
What pH values to use for SEA synthesis?	Uptake Survey using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
What is the weight loading of the Pd?	ICP-OES
How much interaction between Pd and Fe?	Temperature Programmed Reduction (TPR)
What crystallite phases are present?	X-ray Diffraction
What are the crystallite sizes of each phase?	X-ray Diffraction

Uptake Survey results: Use pH 2.5

$$\rightarrow$$
 Pd / Fe₂O₃ \rightarrow Pd / silica

Synthesis and Characterization

Question	Technique used to answer
What pH values to use for SEA synthesis?	Uptake Survey using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
What is the weight loading of the Pd?	ICP-OES
How much interaction between Pd and Fe?	Temperature Programmed Reduction (TPR)

Synthesis and Characterization

Question	Technique used to answer
What pH values to use for SEA synthesis?	Uptake Survey using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
What is the weight loading of the Pd?	ICP-OES
How much interaction between Pd and Fe?	Temperature Programmed Reduction (TPR)

Temperature Programmed Reduction (TPR)

Conditions: 10 °C / min, 50 sccm 10% H₂ in Ar

Pd-Fe interaction: TPR

- Physically mixing samples in the TPR does not aid in reduction
- SEA to put Pd on Fe₂O₃ greatly aids reduction

H₂ Spillover vs. Pd proximity

TPR comparison with Literature¹²

- SEA prepared Pd catalysts (1.72 wt% Pd on Fe₂O₃) show the first reduction peak at 130 °C lower than 0.1 to 5wt% catalysts prepared by incipient wetness impregnation
- Evidence of stronger metal-metal interaction
- Note: the initial Fe particle sizes are different. Our silica supported Fe₂O₃ particles are 5nm, their unsupported Fe₂O₃ particles are 20nm.

Synthesis and Characterization

Question	Technique used to answer
What pH values to use for SEA synthesis?	Uptake Survey using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)
What is the weight loading of the Pd?	ICP-OES
How much interaction between Pd and Fe?	Temperature Programmed Reduction (TPR)
What crystallite phases are present?	X-ray Diffraction
What are the crystallite sizes of each phase?	X-ray Diffraction

In-Situ XRD: 0.24%Pd/13.3%Fe₂O₃/A300

Catalytic Activity

- This series of catalysts completely oxidizes under reaction conditions with H₂O as solvent
- This series of catalysts undergoes majority oxidation under reaction conditions with hexadecane as solvent
- Liquid-phase kinetic data will need to wait for more stable catalysts

Conclusions

- Pd-Fe prepared with SEA shows enhanced interaction in TPR
- The current array of catalysts oxidizes under reaction conditions
- Future work requires further catalyst design and synthesis for enhanced stability during liquid-phase HDO

Acknowledgements

- National Science Foundation IGERT Grant
- Smartstate Center of Catalysis for Renewable Fuels – University of South Carolina
- JR Group
- Dr. Monnier Group
- Dr. Lauterbach Group

Questions?

References

- 1. Milne, T.; Agblevor, F.; Davis, M.; Deutch, S.; Johnson, D., A review of the chemical composition of fast-pyrolysis oils from biomass. In *Developments in Thermochemical Biomass Conversion*, Springer: 1997; pp 409-424.
- 2. Huber, G. W.; Iborra, S.; Corma, A., Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. *Chemical Reviews* **2006**, *106* (9), 4044-4098.
- 3. Olcese, R. et al. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Applied Catalysis B: Environmental 129, 528-538 (2013).
- 4. Olcese, R. et al. Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO₂ catalyst. *Applied Catalysis B: Environmental* **115**, 63-73 (2012).
- 5. Wan, H.; Chaudhari, R. V.; Subramaniam, B., Catalytic hydroprocessing of p-Cresol: metal, solvent and mass-transfer effects. *Topics in Catalysis* **2012**, *55* (3-4), 129-139.
- 6. Sun, J. et al. Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. *Journal of Catalysis* **306**, 47-57 (2013).

References

- 7. Hong, Y. *et al.* Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol. *ACS Catalysis* **4**, 3335-3345 (2014).
- 8. Hong, Y. & Wang, Y. Elucidation of reaction mechanism for m-cresol hydrodeoxygenation over Fe based catalysts: A kinetic study. *Catalysis Communications* **100**, 43-47 (2017).
- 9. Hensley, A. J. et al. Enhanced Fe₂O₃ reducibility via surface modification with Pd: Characterizing the synergy within Pd/Fe catalysts for hydrodeoxygenation reactions. ACS Catalysis 4, 3381-3392 (2014).
- 10. Hong, Y., Zhang, S., Tao, F. F. & Wang, Y. Stabilization of Iron-Based Catalysts against Oxidation: An In Situ Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) Study. *ACS Catalysis* **7**, 3639-3643 (2017).
- 11. Conţescu, C, and M. I. Vass. The effect of pH on the adsorption of palladium (II) complexes on alumina. *Applied Catalysis* 33.2 (1987): 259-271.
- 12. Hensley, A. J.; Hong, Y.; Zhang, R.; Zhang, H.; Sun, J.; Wang, Y.; McEwen, J.-S., Enhanced Fe2O3 reducibility via surface modification with Pd: Characterizing the synergy within Pd/Fe catalysts for hydrodeoxygenation reactions. *ACS Catalysis* **2014**, *4* (10), 3381-3392.