

An Investigation of Highly Selective CO₂ Resistant Catalysts for Ethylene Oxide Production.

Ben Egelske, Weijin Daio, Masud Rahman, John R. Monnier Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208

Introduction

• Ethylene oxide (EO) is manufactured though the direct oxidation of ethylene over a silver (Ag) surface.

$$C_2H_4 + \frac{1}{2}O_2 \rightarrow 2C_2H_4O$$

• The primary reaction (r1) is mildly exothermic but is accompanied by total oxidation (r2) and consecutive oxidation (r3) to produce CO_2 and H_2O .

 r_1 : Partial Oxidation, $\Delta h = -106.7 \text{ kJ/Mol}$ r_2 : Total Oxidation, $\Delta h = -1323 \text{ kJ/Mol}$ r_3 : Consecutive Oxidation, $\Delta h = -1216 \text{ kJ/Mol}$

- Promoters, and co-promotors, are added to improve EO selectivity by limiting r2 and r3.
- Process economics require a recycle stream containing \mathcal{CO}_2 resulting in lower catalytic activity. Greater activity loss is observed for promoted samples.

Project Description

- State of the art catalysts containing Silver (Ag) Cesium (Cs), Rhenium (Re), Molybdenum (Mo), and Sulphur (S) are prepared though incipient wetness.
- Samples are evaluated for kinetic dependencies on CO_2 and O_2 .
- Temperature programed desorption is proposed as a prescreening technique for \mathcal{CO}_2 resistance.

Catalyst Preparation

- Silver salt is impregnated on αAl_2O_3
- In a separate step, ppm levels of Cs and Re promotors as well as Mo and S co-promotors are added.
- Samples are calcined in air before evaluation.

Ethylene CO2 Ethylene CO2 Ethylene CO2 EO H2O CO2 Scrubber Ethylene CO2 EO Ethylene CO2 EO ECO2 EO ECO2 EO ECO2 EO ECO2 EO ECO3 ECO3

Figure modified from US Patent Number 9067901 B2, [7]

EO

O₂ Dependency

- 1. Feed concentrations of 1.0% CO_2 result in an 18% activity loss for Ag only samples and 38% activity loss for promoted samples.
- 2. Selectivity is increased with the addition of CO_2 in agreement with Le Chatelier's principle.
- 3. A two fold increase in Ag loading reduces the O_2 reaction order from 0.88 to 0.49 suggesting a site sharing mechanism.

<u>Mechanism</u>

© 82

- 1. High Valent Re, and (Mo,S) copromoters, draw the electron density from Ag sites.
- 2. In the absence of adsorbed carbonate, electron deficient oxygen performs an electrophilic attack on the double bond of gas phase C₂H₄.
- 3. Electron rich Cs reduces the adsorption energy of the EO intermediate limiting the degree of complete combustion.

Atmospheric Temperature Programed Desorption

- 1. Promoted samples show a measurable shift to higher temperature CO_2 desorbtion.
- 2. Oxygen pretreatment is required for CO_2 coverage which agrees with the proposed mechanism.
- Peak fitting and CO_2 quantification suggests separate high temperature and low temperature adsorption sites

Conclusion and Future Work

- Promoters result in a measurable effect on adsorption and suggest a stronger Ag-O- CO_2 bond. This concept will be explored with XPS to further define promoter interactions in the presence of CO_2 .
- Future experiments will continue to probe the mechanism under atmospheric conditions while in a separate line of work, high pressure adsorption studies will be developed.
- Results will be correlated with reactor evaluation data to prescreen samples for ${\it CO}_2$ resistance.