An Investigation of Highly Selective CO₂ Resistant Catalysts for Ethylene Oxide Production. Ben Egelske, Weijin Daio, Masud Rahman, John R. Monnier Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208 ### Introduction • Ethylene oxide (EO) is manufactured though the direct oxidation of ethylene over a silver (Ag) surface. $$C_2H_4 + \frac{1}{2}O_2 \rightarrow 2C_2H_4O$$ • The primary reaction (r1) is mildly exothermic but is accompanied by total oxidation (r2) and consecutive oxidation (r3) to produce CO_2 and H_2O . r_1 : Partial Oxidation, $\Delta h = -106.7 \text{ kJ/Mol}$ r_2 : Total Oxidation, $\Delta h = -1323 \text{ kJ/Mol}$ r_3 : Consecutive Oxidation, $\Delta h = -1216 \text{ kJ/Mol}$ - Promoters, and co-promotors, are added to improve EO selectivity by limiting r2 and r3. - Process economics require a recycle stream containing \mathcal{CO}_2 resulting in lower catalytic activity. Greater activity loss is observed for promoted samples. # **Project Description** - State of the art catalysts containing Silver (Ag) Cesium (Cs), Rhenium (Re), Molybdenum (Mo), and Sulphur (S) are prepared though incipient wetness. - Samples are evaluated for kinetic dependencies on CO_2 and O_2 . - Temperature programed desorption is proposed as a prescreening technique for \mathcal{CO}_2 resistance. ## **Catalyst Preparation** - Silver salt is impregnated on αAl_2O_3 - In a separate step, ppm levels of Cs and Re promotors as well as Mo and S co-promotors are added. - Samples are calcined in air before evaluation. # Ethylene CO2 Ethylene CO2 Ethylene CO2 EO H2O CO2 Scrubber Ethylene CO2 EO Ethylene CO2 EO ECO2 EO ECO2 EO ECO2 EO ECO2 EO ECO3 # Figure modified from US Patent Number 9067901 B2, [7] EO # O₂ Dependency - 1. Feed concentrations of 1.0% CO_2 result in an 18% activity loss for Ag only samples and 38% activity loss for promoted samples. - 2. Selectivity is increased with the addition of CO_2 in agreement with Le Chatelier's principle. - 3. A two fold increase in Ag loading reduces the O_2 reaction order from 0.88 to 0.49 suggesting a site sharing mechanism. ## <u>Mechanism</u> © 82 - 1. High Valent Re, and (Mo,S) copromoters, draw the electron density from Ag sites. - 2. In the absence of adsorbed carbonate, electron deficient oxygen performs an electrophilic attack on the double bond of gas phase C₂H₄. - 3. Electron rich Cs reduces the adsorption energy of the EO intermediate limiting the degree of complete combustion. # **Atmospheric Temperature Programed Desorption** - 1. Promoted samples show a measurable shift to higher temperature CO_2 desorbtion. - 2. Oxygen pretreatment is required for CO_2 coverage which agrees with the proposed mechanism. - Peak fitting and CO_2 quantification suggests separate high temperature and low temperature adsorption sites ### **Conclusion and Future Work** - Promoters result in a measurable effect on adsorption and suggest a stronger Ag-O- CO_2 bond. This concept will be explored with XPS to further define promoter interactions in the presence of CO_2 . - Future experiments will continue to probe the mechanism under atmospheric conditions while in a separate line of work, high pressure adsorption studies will be developed. - Results will be correlated with reactor evaluation data to prescreen samples for ${\it CO}_2$ resistance.